WORKBOOK ANSWERS OCR A-level Chemistry A Organic chemistry and analysis

This Answers document provides suggestions for some of the possible answers that might be given for the questions asked in the workbook. They are not exhaustive and other answers may be acceptable, but they are intended as a guide to give teachers and students feedback.

Module 6 Organic chemistry and analysis

Aromatic compounds, carbonyls and acids

Aromatic compounds

Benzene and aromatic compounds

1a Benzene = C_6H_6 = 72 + 6 = 78 % C = (72/78) × 100 = 92.3% \checkmark [1]

1b

i Kekulé suggested that adjacent p-orbitals overlap to form π -bonds (as they did in alkenes) such that there were alternating double and single bonds around the ring, as shown below. \checkmark

ii In the delocalised model adjacent p-orbitals overlap and spread around the ring, creating an electron cloud above and below the ring (see below) to form π -bonds above and below the plane. \checkmark

1c

- i The bond angles in benzene are all 120° . \checkmark [1]
- ii A σ -bond is a shared pair of electrons where the two electrons are centred between the two nuclei. \checkmark A π -bond is a shared pair of electrons where the two electrons overlap sideways above and below the plane of the two nuclei. \checkmark [2]

Electrophilic substitution and phenols

3b Step 1: formation of CH3⁺ + AICI4- $H_3C - CI + AICI_3$ the electrophile CH₃ CH₃ H Step 2: substitution of H CH H⁺ by the electrophile Step 3: regeneration of AICI₃ HCI AICI4 the catalyst (halogen carrier) [1 + 3 + 1 = 5]

Phenol is faster because a lone pair of electrons from the oxygen in the OH is delocalised into the ring. ✓ This increases the electron density in the ring, which polarises the Br–Br ✓ and increases the attraction for an electrophile ✓. [3]

[2]

- 4b The π-electrons in the alkene (cyclohexene) are localised between the two C=C. ✓
 Therefore, cyclohexene has high electron density, greater ability to polarise the Br–Br and to attract an electrophile, ✓ so cyclohexene reacts faster than benzene. ✓ [3]
- 5a Does not react and decolorise bromine (without a halogen carrier). ✓

All C–C bond lengths are the same (and intermediate between a C–C and a C=C). \checkmark

The enthalpy of hydrogenation of benzene is not three times the enthalpy of hydrogenation of cyclohexene. \checkmark [3]

5b

The OH group and the NH_2 group each have lone pairs of electrons that can be delocalised into the ring.

As the electron pair moves around the ring, the negative charge only ever appears at the 2, 4 and 6 positions. This means that electrophiles are directed towards the 2, 4 and 6 positions. [4]

ii	The H ⁺ in stage 1 accepts an electron pair \checkmark , behaves as an electrophile \checkmark and adds across the C=C bond, forming a secondary carbocation/carbonium ion. \checkmark	[3]
It could stage 1.	also be argued that the H+ is a catalyst, as it is regenerated in the second step of	
iii	When H ⁺ reacts with propene, the unstable primary carbocation $CH_3CH_2CH_2^+$ walso be formed \checkmark as a minor product, which would react to give $C_6H_5CH_2CH_2CH_3 \checkmark$	/ill [2]
1b		
i	Mass spectrum shows molar mass = 58 g mol ⁻¹ \checkmark .	
	IR shows C=O at about 1700 cm⁻¹ ✓.	
	C=O has mass 28, so the rest of the molecule is $58 - 28 = 30 = 2 \times CH_3 \checkmark$, so it must be CH ₃ COCH ₃ \checkmark	[4]
Could al	so use peak at <i>m/z</i> = 43 as evidence for (CH ₃ C=O) ⁺ (g).	
ii	$C_6H_5CH(CH_3)_2 + O_2 \rightarrow C_6H_5OH + CH_3COCH_3$	[1]
1c		
i	OH⁻ is a nucleophile in this reaction.	[1]
	Arenes normally react with electrophiles. Harsh conditions are needed to overc	ome

- ii Arenes normally react with electrophiles. Harsh conditions are needed to overcome the repulsion/high activation energy. [1]
- 2a

Intermediate

[8]

2b

i

Stage 1: must chlorinate first \checkmark . If nitrated first the major product would be 3-nitrochlorobenzene \checkmark .

Stage 1: Cl₂/AlCl₃(anhydrous) ✓

Intermediate product: chlorobenzene ✓

Stage 2: conc HNO₃ (H₂SO₄) [5]

ii
$$CIC_6H_4NO_2 + 6[H] \checkmark \rightarrow CIC_6H_4NH_2 + 2H_2O \checkmark$$
 [2]

2c

i Reaction with Na:

Observation: effervescence/bubbles ✓

Reaction with Br₂:

At least one H replaced by a Br anywhere on the ring. \checkmark

[4]

Observation: decolorises bromine/white precipitate. \checkmark

Carbonyl compounds

Reactions of carbonyl compounds

1a

1b

Mechanism is nucleophilic addition. Product is 2-hydroxy-2-methylbutanenitrile. [3]

Mechanism is nucleophilic addition. Product is phenylmethanol.	[3]
--	-----

4× ✓ for the mechanism

Characteristic tests for carbonyl compounds

2a To 3 cm³ of AgNO₃(aq) add 1 drop of NaOH(aq). A brown precipitate of AgO(s) will be formed. Add dilute NH₃(aq) drop by drop until the precipitate just re-dissolves. ✓ Place in a beaker of water at about 60°C for about 5 minutes. ✓

Split the solution between two test tubes. Add 4 drops of propanal to one test tube and 4 drops of propanal to the other test tube. [3]

2b The test tube with the propanal will produce a silver precipitate/mirror and the one with the propanone will not. \checkmark CH₃CH₂CHO + [O] \rightarrow CH₃CH₂COOH \checkmark

and

 $Ag^{+} + 1e^{-} \rightarrow Ag(s) \checkmark$

Carboxylic acids and esters

Properties of carboxylic acids

- 1a $2CH_3COOH + Mg \rightarrow (CH_3COO^-)_2Mg^{2+} + H_2$ [1]
- **1b** HOOC-COOH + Na₂CO₃ \rightarrow Na⁺-OOC-COO⁻Na⁺ + CO₂ + H₂O [1]

Esters and acyl chlorides

- 2a Propan-2-ol, CH₃CH(OH)CH₃
- 2b Thionyl chloride, SOCl₂
- 2c Dimethylamine, (CH₃)₂NH
- 2d Propanamide

$$\begin{array}{cccc} H & H & NH_2 \\ H - C - C - C - C = O \\ H & H \end{array}$$

[8]

[3]

Exam-style questions

⊏xam 1a	-style questions	
i	CH₃COOH + C₂H₅OH ⇒ CH₃COOC₂H₅ + H₂O ✓	[1]
ii	Catalyst ✓	[1]
iii	Any H ₂ O present would push the equilibrium to the left and reduce formation of ester \checkmark	[1]
iv	mol of ethanol = 6.90/46 = 0.15 mol ✓	
	0.15 mol of ethanoic acid = $0.15 \times 60 = 9.0 \text{ g} \checkmark$	[2]
v	Heat is required to initiate the reaction \checkmark , if distilled immediately the volatile compounds would be distilled out and disturb the equilibrium \checkmark .	[2]
1b		
i	$2H^{\scriptscriptstyle +}(aq) + CO_3{}^{2-}(aq) \to CO_2(g) \ + H_2O(I) \checkmark$	[1]
ii	Use a separating (dropping) funnel and run off the lower aqueous layer \checkmark	[1]
1c		
i	mol of ethanol used = 0.15 mol	
	mol of ethyl ethanoate produced = $5.28/88 = 0.06$ mol \checkmark	
	% yield (0.06/0.15) × 100 = 40% ✓	[2]
ii	Use ethanoyl chloride or ethanoic anhydride instead of ethanoic acid \checkmark . Reaction not reversible \checkmark .	on is [2]

2 Acid anhydrides react with alcohol/phenols to produce an ester and carboxylic acid. The equation can be represented as:

 $CH_3COOCOCH_3 + ROH \rightarrow CH_3COOR + CH_3COOH \checkmark$

Atom economy = $\left(\frac{\text{molar mass of desired product (CH_3COOR)}}{\text{molar mass of all products (CH_3COOR + CH_3COOH)}\right) \times 100$

Assume molar mass of CH₃COOR is M, so the only unknown is M. Rearrange the equation and solve for M.

$$69.39 = \left(\frac{M}{M+60}\right) \times 100 \checkmark \checkmark \checkmark$$

69.39(M + 60) = 100M

69.39M + 4163.3 = 100M

4163.4 = 30.61M

Solving for *M* gives molar mass of CH₃COOR = 136 \checkmark

CH₃COO has mass = 59, so mass of R must be 136 - 59 = 77 ✓

The R group is made up of only C and H, so it must be C_6H_5 (phenyl) \checkmark

[8]

3a

3b

iReagent A is HCl and reagent B is NaOH[2]ii $HOC_6H_4NO_2 + 6[H] \rightarrow HOC_6H_4NH_2 + 2H_2O$ [2]

iii

Product 1

Product 2

[2]

3c

[4]

Nitrogen compounds, polymers and synthesis

Amines

Basicity and preparation of amines

Amino acids, amides and chirality

Reactions of amino acids

- **1a** Compound in which the amine group and the carboxylic acid group are attached to the same carbon. [1]
- 1b H₂NCH(R)COOH

Amides and chirality

2 *Chiral* compounds are asymmetric and have non-superimposable mirror images. [1]

3a

i

[6]

[1]

3b

i

 H_2N

iii

$$H_{2}N H_{4}^{+} H_{2}N H_{4}^{+}$$
(3)

i
$$C_2H_5NO_2 + C_5H_{11}NO_2 \rightarrow C_7H_{14}N_2O_3 + H_2O$$
 [1]

ii

3e asp-val-lys-gly-gly-val-gly

4a

4b

4c

[1]

4f

4g

4h

5a

Methanamide

5c

Phenylamine

5d

Exam-style questions

1a

1b

[2]

[4]

1c

0	0		

Element	С	Н	0
Mass/%	30.00	3.33	66.67
Ratio	30.00/12 = 2.50	3.33/1 = 3.33	66.67/16 = 4.17
Simplest ratio	2.50/2.50 = 1	3.33/2.50 = 1.33	4.17/2.50 = 1.67
Whole number ratio (×3)	3	4	5

Empirical formula = $C_3H_4O_5 \checkmark \checkmark$

Empirical mass =
$$36 + 4 + 80 = 120$$
, so molecular formula = $C_3H_4O_5 \checkmark$ [3]

2b

2c

i

ii

ii

[2]

[1]

ii Fumaric acid has a C=C double bond with each carbon bonded to two different atoms or groups and forms *E* and *Z* isomers.

iii mol of 2-hydroxybenzoic acid = $1.05/138 \checkmark = 7.61 \times 10^{-3} \text{ mol } \checkmark$

mol of aspirin = 0.98/180 ✓ = 5.44 × 10⁻³ mol ✓

% yield =
$$(5.44 \times 10^{-3}/7.61 \times 10^{-3}) \times 100 = 71.5\%$$
 √ [5]

3c

3a

3d Melting points would be lowered ✓ and melting would not be sharp but spread over a range of temperatures ✓. [2]

Hodder Education

[2]

ii

[2]

- **3f** Na₂CO₃(aq) \checkmark reacts with COOH \checkmark in aspirin but not with the phenol in paracetamol. [2]
- 3g Br₂ ✓ reacts on the benzene ring of paracetamol because it is activated by the OH group ✓.

Polyesters and polyamides

Condensation polymers

1a

 CH_3

Ĥ

Н

 CH_3

Н

Н

Repeat unit

1b

CH₃

Н

Н

Phenylethene

[1]

A condensation polymer is formed by the elimination of a small molecule such as H₂O or HCl ✓ between monomers to generate a long-chain polymer. ✓ [2]

4a

i Ethane-1,2-diol	ii Benzene-1,4-dioyl chloride	iii 1,4- diaminohexane	iv Hexanedioic acid
HO-CH2CH2-OH		H2N(CH2)6NH2	HOOC(CH ₂) ₄ COOH
			[4]

4b

Aminoethanoic acid (glycine)

2-amino-3-methylbutanoic acid (valine)

[4]

[3]

6b

HO

OH

[2]

[2]

[2]

6c

OH

6d

Exam-style question

1a

The single monomer ethene, H₂C=CH₂, can add together to form an addition polymer ✓. The dioic acid and the diol can react to form a condensation polymer ✓ and condense out H₂O. ✓ [3]

All marks could be achieved by suitable equations.

ii

[2]

ii

Reagent = dilute HCl or NaOH \checkmark Conditions warm gently/reflux \checkmark [2]

1c

[2]

[1]

Carbon-carbon bond formation

Extending carbon chain length

$$1a \quad CH_3CH_2CI + K^+CN^- \rightarrow CH_3CH_2CN + K^+CI^-$$
[1]

1c

[3]

i

3b Reagent = acid/H⁺, conditions = (aq)

Equation:

$$C_2H_5 - C \equiv N$$
 $H_2O/H^+(aq)$

$$C_2H_5 - C - NH_2$$

Hydrolysis occurs and water adds to form an acid amide

$$C_2H_5 - C - NH_2$$

H₂O/H⁺(aq) \rightarrow Hydrolysis occurs again and water adds to form

a carboxylic acid

$$C_2H_5 - C - OH + NH_4^+$$

The net reaction for acid hydrolysis is:

$$C_2H_5CN + 2H_2O + H^+ \rightarrow C_2H_5COOH + NH_4^+$$
[3]

Organic synthesis

Practical skills

1a Reflux

1b Distillation

Synthetic routes

2a Dissolve impure sample in minimum amount of hot water.

Filter while hot to remove insoluble graphite.

Allow to cool and filter cold solution to remove insoluble benzoic acid.

Wash with cold water and leave overnight to dry.

2b Melting point: should be sharp melting (at 122°C) if pure (impurities lower the melting point and increase the range over which it melts). [2]

-
~
J

Test	Observation	Inference
Add litmus	Turns red	Carboxylic acid
		or phenol
	Turns blue	Amine
Add Br ₂	Decolorises	Alkene
	Decolorises and white precipitate formed	Phenol
Add Na	Effervescence/bubbles	Carboxylic acid, phenol or alcohol
Add Na ₂ CO ₃ (aq)	Effervescence /gas (CO ₂) given off, bubbles, fizzes	Carboxylic acid
In water bath at about 60°C with AgNO₃(aq)/ethanol	White, cream or yellow precipitate formed	Haloalkanes

27

[4]

Test	Observation	Inference	
Tollens' reagent/Ag⁺(NH₃)₂	Silver mirror formed	Aldehyde	
Heat with H ⁺ /Cr ₂ O ₇ ²⁻	Colour changes from orange to green	Primary alcohol, secondary alcohol, aldehyde	
Add water	White fumes of HCI given off	Acyl chloride	
Warm with NaOH(aq)	Smell of NH ₃ gas (which turns litmus blue)	Amide	
		[10]	

Stage 1 Reduce propanal to propan-1-ol with NaBH₄ $CH_3CH_2CHO + 2[H] \rightarrow CH_3CH_2CH_2OH$ Stage 2 React alcohol with HBr (made *in situ* from NaBr/H₂SO₄) $CH_3CH_2CH_2OH + H^+ + Br^- \rightarrow CH_3CH_2CH_2Br + H_2O$ [6] Stage 1 React butan-1-ol with hot concentrated H₂SO₄ (approx. 170°C) $CH_{3}CH_{2}CH_{2}CH_{2}OH \rightarrow CH_{3}CH_{2}CH=CH_{2} + H_{2}O$ Stage 2 React but-1-ene with steam in presence of acid (H₃PO₄) catalyst $CH_3CH_2CH=CH_2 + H_2O(g) \rightarrow CH_3CH_2CH(OH)CH_3$ This will follow the Markownikoff rule. [6] Stage 1 React propene with steam in presence of acid (H₃PO₄) catalyst $CH_3CH=CH_2 + H_2O(g) \rightarrow CH_3CH(OH)CH_3$ This will follow the Markownikoff rule. Stage 2 Reflux with H⁺/Cr₂O₇²⁻ to oxidise propan-2-ol to form propanone $CH_{3}CH(OH)CH_{3} + [O] \rightarrow CH_{3}COCH_{3} + H_{2}O$ Stage 3 React propanone with HCN

 $CH_3COCH_3 + HCN \rightarrow CH_3C(CN)(OH)CH_3$

 $CH_{3}C(CN)(OH)CH_{3}$ can be written as $CH_{3}C(CH_{3})(OH)CN$

Stage 4 Acid hydrolysis of 2-methylpropanenitrile

 $CH_{3}C(CH_{3})(OH)CN + 2H_{2}O + H^{+} \rightarrow CH_{3}C(CH_{3})(OH)COOH + NH_{4}^{+}$

4

5

Exam-style question

1a	Ratio C:N:H = 77.42/12 : 15.05/14 : 7.53/1	
	Empirical formula C:N:H = 6.45:1.075:7.53 = 6:1:7 = C ₆ NH ₇ ✓	
	Mass spectrum shows molecular ion at m/z = 93 so molecular formula also C ₆ NH ₇	\checkmark
	Infrared spectrum shows N–H in region 3300–3500 cm ⁻¹ \checkmark	
	Compound B is C ₆ H₅NH ₂ ✓	[4]
1b	Stage 1 nitration of benzene	
	Reagent: conc HNO₃ ✓ Conditions: conc H₂SO₄ catalyst / temp 50–60°C ✓	
	Equation: C ₆ H ₆ + HNO ₃ \rightarrow C ₆ H ₅ NO ₂ + H ₂ O \checkmark	
	Stage 2 reduction of nitrobenzene	
	Reagent: Sn and conc HCl \checkmark Conditions: warm \checkmark	
	Equation: $C_6H_5NO_2$ + 6[H] \rightarrow $C_6H_5NH_2$ + 2H ₂ O \checkmark	
	Stage 3 reaction of phenylamine with acyl chloride	
	Reagent: CH ₃ COCI \checkmark Conditions: anhydrous/fume cupboard \checkmark	
	Equation: C ₆ H ₅ NH ₂ + CH ₃ COCI \rightarrow C ₆ H ₅ NHCOCH ₃ + HCI \checkmark	[9]

Analysis

Chromatography and qualitative analysis

Types of chromatography

- **1a** $R_{\rm f}$ value = (distance travelled by component)/(distance travelled by solvent)
- **1b** retention time time taken for component to emerge from column after injection of sample into column. [2]
- **2** Quantitative results are difficult to achieve with TLC.

Similar compounds have similar $R_{\rm f}$ values and spots may overlap. [2]

Tests for organic functional groups

3

Functional group		Reagent/conditions	Observation	Marks
Name	Group			
Alkene		Br ₂ (aq)	Decolorised	2
Haloalkane	R—CI	Ag(NH ₃) ₂ ⁺ (aq) in water bath at about 60°C/NaOH(aq) + AgNO ₃ (aq)/NH ₃ (aq)	Ag(halide)(s)	2
*Aldehyde	(⁰	2,4-dinitrophenylhydrazine solution	Orange precipitate	2
	Хн	Tollens' test	Silver mirror	2
*Ketone	(^//	2,4-dinitrophenylhydrazine solution	Orange precipitate	2
	\setminus	Tollens' test	No silver mirror	2
*Phenol		Br ₂	Decolorised and white precipitate	2
		Na(s)	Effervescence / bubbles	2
Carboxylic acid	О	Na ₂ CO ₃ (aq)	Effervescence / bubbles	2
Acid chloride		H ₂ O	White fumes of HCI	2
* Each of these functional groups requires a combination of two tests to confirm its presence				

NMR spectroscopy

Absorbs at higher frequency than other organic compounds (doesn't overlap with other organic compounds) [3]

Only 1 singlet peak in both ¹H and ¹³ CNMR spectra

Identify the range for the ¹	<u>H</u> environment	Identify the range for the ¹³ C environment				
Chemical environment	δ	Chemical environment	δ 5–50			
C <mark>H</mark> 3CH2OH	0.5–2.0	CH3CH2OH				
C <mark>H</mark> ₃COOH	2.0–3.0	CH ₃ COOH	160–220			
C <mark>H</mark> ₃CHO	2.0–3.0	CH₃ <mark>C</mark> HO	160–220			
C ₆ H₅C <mark>H</mark> ₃	2.0–3.0	<u>C</u> ₆ H₅CH ₃	110–160			
CH ₃ CH ₂ O <u>H</u>	0.8–12.0	CH ₃ CH ₂ NH ₂	30–70			
CH ₃ C <mark>H</mark> ₂ OH	3.0-4.2	CH ₃ CH <mark>C</mark> H ₃	5–50			
CH₃COO <u>H</u>	10.2–12.0	CH ₃ CHBrCH ₃	20–50			
CH ₃ C <mark>H</mark> ₂ CH ₃	0.5–2.0	CH ₃ COOCH ₃	160–220			
CH ₃ COCH ₂ CH ₃	2.0–3.0	CH ₃ COCH ₃	160–220			
C ₆ H ₆	6.5–8.0	CH₃ <u>C</u> H(OH)CH₃	50–90			
CH₃C <mark>H</mark> O	9.0–10.0	CH ₃ -O- <mark>C</mark> H ₃	50–90			
C <mark>H</mark> ₃OH	3.0-4.2	H ₂ NCH(CH ₃) <u>C</u> OOH	160–220			
CH ₃ COOC <mark>H</mark> ₂ CH ₃	3.0-4.2	CH ₃ CONHCH ₃	160–220			
C ₆ H₅O <mark>H</mark>	0.8–12.0	H ₂ N <u>C</u> H(CH ₃)COOH	30–70			

Spectrum 1 is compound C ✓ because it has 2 peaks ✓ in region 5–50 ppm ✓
 Spectrum 2 is compound A ✓ because it has 3 peaks ✓ (in the region 0–70 ppm) ✓
 Spectrum 3 is compound D ✓ because it has 2 peaks ✓ in region 90–160 ppm ✓
 Spectrum 4 is compound E ✓ because it has 4 peaks ✓ in region 90 –60 ppm ✓
 Spectrum 5 is compound B ✓ because it has 4 peaks ✓ in region 5–50 ppm ✓

4 82.76% C and 17.24% H gives

ratio C : H = 82.76/12 : 17.24/1

C : H = 6.90 : 17.24

so ratio 1 : 2.5 so empirical formula is C_2H_5 . \checkmark

Empirical mass = 29 molar mass = 58 so molecular formula is C_4H_{10} \checkmark

It could be butane or methylpropane. ¹³C NMR has 4 peaks: butane has 4 different C environments \checkmark whereas methylpropane only has 2 C environments \checkmark . Therefore, it is butane. [4]

5a i If undeuterated solvents were used (e.g. CHCl₃), the H would absorb and interfere/overlap with the spectrum of the sample. ✓

ii If deuterated solvents (e.g. $CDCl_3$) are used, the ²D absorbs at frequencies that do not interfere/overlap with the spectrum of the sample. \checkmark [2]

CDCl₃ or any other deuterated solvent ✓

5b

Number of H on adjacent C	Type of splitting			
1	Doublet (2)			
2	Triplet (3)			
3	Quartet (4)			
4	Pentet/quintet (5)*			

[2]

* Multiplet would suffice

5c

There are 4 different H environments in methylbutane (labelled a to d) The peak ratio will be

$$H_{a} : H_{b} : H_{c} : H_{d}$$

[2]

5d

Compound	CH ₃ CH ₂ OH		CH ₃ COOCH ₃			HCOOCH ₂ CH ₃			
Number of peaks	3			2			3		
Ratio of peak areas	3:2:1			1:1			1:2:3		
Type of H and δ value and splitting	CH₃	0.5– 2.0	Triplet	CH _{3 (on} left)	2.0– 3.0	Singlet	Η	2.0–3.0	Singlet
Type of H and δ value and splitting	CH ₂	3.0– 4.2	Quartet	CH _{3 (on} right)	3.0– 4.2	Singlet	CH ₂	3.0-4.2	Quartet
Type of H and δ value and splitting	ОН	0.5–12	Singlet				CH ₃	0.5–2.0	Triplet
Marks				1	1		1	1	1

- **5e** A labile proton is a proton that is easy to exchange with other protons in the solvent, such as in O–H or N–H. These are difficult to assign as they appear in a wide range. If solvent is deuterated the proton in the O–H or in the N–H and the deuterated proton exchange and the ¹H peak disappears from the spectrum.
- **5f** Alcohol, carboxylic acid, amine and amide.

Combined techniques

- **6a** Infrared spectroscopy can be used to identify functional groups.
- **6b** Chromatography can be used to separate components in a mixture.
- 6c Mass spectrometry can be used to determine molar mass.
- **6d** GC is used to separate components \checkmark and MS uses fragmentation ions \checkmark to match with computer database \checkmark to identify the component. \checkmark
- 6e ¹³C NMR is used to identify carbon environments.
- **6f** ¹H NMR is used to identify hydrogen environments ✓ and splitting patterns ✓ give information about neighbouring environments. ✓
- 7 Step 1 IR shows peak in region 3200–3600 cm⁻¹ indicating an alcohol.

Step 2 MS has molecular ion peak at m/z = 74 showing molar mass to be 74 g mol⁻¹

Step 3 OH functional group has mass = 17, molar mass = 74 therefore the rest of the molecule = 74 - 17 = 57. (Assuming only one –OH group is present)

Step 4 The rest of the molecule is the carbon & hydrogen hence it must be made up of 4 carbons (48) and 9 hydrogens so the formula is C_4H_9OH .

Step 5 ¹³C NMR shows there are 3 different C environments.

Step 6

3 C environments

 H_a is split into a doublet, as it is next to C–H. Chemical shift is 0.5–2.0 as next to C in chain.

 H_b is split into a multiplet, as it is next to 8Hs, but in different environments.

 H_c is split into a doublet, as it is next to C–H. Chemical shift is 3.0–4.2 as next to O.

H_d is a singlet.

Hence the compound is methylpropan-1-ol.

8 There are numerous ways this can be approached. It is possible to simply label key features on each spectrum and to use them to build the unknown molecule. However, a much better approach is to write out each step in full and explain your logic, so that the marker/examiner can follow your approach.

A possible mark scheme is:

- C=O identified in IR ✓
- Molar mass deduced from MS ✓
- Benzene ring deduced from either MS or ¹H NMR ✓
- CH₃CH₂ deduced from peaks at 1.2 and 4.3 in IR ✓
- CH₂ bonded to an O deduced from chemical shift in IR ✓
- Four different C environments in benzene ring deduced from peaks around 130 in ¹³C NMR ✓

Compound B is C₆H₅COOCH₂CH₃. ✓

There are many different ways in which the chemical could have been identified

Exam-style questions

1a

- i Each peak was counted as a separate ester \checkmark [1]
- Similar compounds have similar retention times ✓ and peaks might overlap so that what looks like one peak may be made up of more than 1 ester ✓ [2]
- 1b Mass spectrum shows molecular ion = 150 ✓ Ester group COO has mass = 44, rest of molecule has mass = 106 and consists of 8C (96) and 10H, molecular formula is C₉H₁₀O₂. ✓✓

 ^{13}C NMR shows nine different C environments. \checkmark

¹H NMR shows aromatic carbons. \checkmark

 ^{13}C NMR shows that each of the aromatic carbons are non-equivalent. \checkmark

Chemical shifts: ¹H NMR shows the aliphatic protons in region 2–3 ppm, so must be either HC– bonded to a C=O and/or a benzene ring \checkmark (or a N) and four aromatic protons, so must be two aromatic protons substituted \checkmark .

Hence it contains:

- a benzene ring with a methyl group attached \checkmark
- a methyl group attached to C=O of the ester which is attached to the ring \checkmark

Isomers A and B each have six difference carbon environments in the benzene ring and one for each of the aliphatic carbons, giving a total of nine peaks.

Isomer C would have four peaks due to the aromatic carbons and one for each of the aliphatic carbons, giving a total of seven peaks. $\sqrt[4]{\sqrt{4}}$

A would have 9, B would 9 and C would have 7.

So it is either A or B

[13]

- **1c** The fragmentation pattern in the mass spectra \checkmark of the two isomers could be identified using a computer database. \checkmark [2]
- 2a Instant decolorisation of Br₂ suggest it contains an alkene group, C=C. ✓

Reaction with $H^+/Cr_2O_7^{2-}$ indicates either a primary alcohol, a secondary alcohol or an aldehyde. $\checkmark\checkmark$ [3]

2b Mass spectrum shows molecular ion at m/z = 132

Wet tests show either primary alcohol, secondary alcohol or aldehyde but infrared spectrum shows must be aldehyde \checkmark , because there is a peak at approx. 1700 cm⁻¹ and there isn't a peak in region 3200–3600 cm⁻¹. \checkmark

Mass of compound = 132, mass of functional groups (C=C = 24 + C=O = 28) = 52 so the rest of the molecule has a mass of 132 - 52 = 80. \checkmark

The rest of the compound is C and H, hence 6C and 8H. ✓

Molecular formula = $C_6H_8 + C=C + C=O = C_9H_8O$.

Mass spectrum: peak A $m/z = 132 = C_9H_8O^+(g) \checkmark$

peak B $m/z = 103 = C_8 H_7^+(g) \checkmark$

(Allow C₇H₅O⁺)

peak C
$$m/z = 77 = C_6 H_5^+(g) \checkmark$$

 C_6H_5 is benzene ring with 1 H substituted C_6H_5-

 C_8H_7 must be benzene ring attached to C_2H_2 : C_6H_5 – $CH=CH-\checkmark$

(Allow C₆H₅CO)

C₉H₈O must be C₆H₅–CH=CH– attached to CHO \checkmark

(Allow $C_6H_5COCHCH_2$, which can be ruled out because it is a ketone.)

To give C_6H_5 -CH=CHCHO:

[10]