WORKBOOK ANSWERS

OCR A-level Chemistry A Organic chemistry and analysis

This Answers document provides suggestions for some of the possible answers that might be given for the questions asked in the workbook. They are not exhaustive and other answers may be acceptable, but they are intended as a guide to give teachers and students feedback.

Module 6 Organic chemistry and analysis

Aromatic compounds, carbonyls and acids

Aromatic compounds

Benzene and aromatic compounds

1a Benzene $=\mathrm{C}_{6} \mathrm{H}_{6}=72+6=78 \quad \% \mathrm{C}=(72 / 78) \times 100=92.3 \% \checkmark$
1b
i Kekulé suggested that adjacent p-orbitals overlap to form π-bonds (as they did in alkenes) such that there were alternating double and single bonds around the ring, as shown below. \checkmark

\checkmark
ii In the delocalised model adjacent p-orbitals overlap and spread around the ring, creating an electron cloud above and below the ring (see below) to form π-bonds above and below the plane.

[2]
1c
i The bond angles in benzene are all 120°.
ii A σ-bond is a shared pair of electrons where the two electrons are centred between the two nuclei. \checkmark A π-bond is a shared pair of electrons where the two electrons overlap sideways above and below the plane of the two nuclei.

Electrophilic substitution and phenols

2

3a Reagents and conditions: $\mathrm{CH}_{3} \mathrm{Cl}$ and anhydrous AlCl_{3}.
3b
Step 1:
formation of the electrophile

$$
\mathrm{H}_{3} \mathrm{C}-\mathrm{Cl}+\mathrm{AlCl}_{3} \longrightarrow \mathrm{CH}_{3}^{+}+\mathrm{AlCl}_{4}^{-}
$$

Step 2:

substitution of H by the electrophile

Step 3:

regeneration of the catalyst (halogen carrier)

$$
\mathrm{AlCl}_{4}^{-}+\mathrm{H}^{+} \longrightarrow \mathrm{AlCl}_{3}+\mathrm{HCl}
$$

4a Phenol is faster because a lone pair of electrons from the oxygen in the OH is delocalised into the ring. \checkmark This increases the electron density in the ring, which polarises the $\mathrm{Br}-\mathrm{Br} \checkmark$ and increases the attraction for an electrophile \checkmark.

4b The π-electrons in the alkene (cyclohexene) are localised between the two $C=C$. \checkmark Therefore, cyclohexene has high electron density, greater ability to polarise the $\mathrm{Br}-\mathrm{Br}$ and to attract an electrophile, \checkmark so cyclohexene reacts faster than benzene.

5a Does not react and decolorise bromine (without a halogen carrier).
All $\mathrm{C}-\mathrm{C}$ bond lengths are the same (and intermediate between a $\mathrm{C}-\mathrm{C}$ and a $\mathrm{C}=\mathrm{C}$).
The enthalpy of hydrogenation of benzene is not three times the enthalpy of hydrogenation of cyclohexene.

5b

The OH group and the NH_{2} group each have lone pairs of electrons that can be delocalised into the ring.

As the electron pair moves around the ring, the negative charge only ever appears at the 2,4 and 6 positions. This means that electrophiles are directed towards the 2, 4 and 6 positions.

Exam-style questions

1a
i

The H^{+}in stage 1 accepts an electron pair \checkmark, behaves as an electrophile \checkmark and adds across the $\mathrm{C}=\mathrm{C}$ bond, forming a secondary carbocation/carbonium ion.

It could also be argued that the $\mathrm{H}+$ is a catalyst, as it is regenerated in the second step of stage 1.
iii When H^{+}reacts with propene, the unstable primary carbocation $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}{ }^{+}$will also be formed \checkmark as a minor product, which would react to give $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} \checkmark$

1b
i Mass spectrum shows molar mass $=58 \mathrm{~g} \mathrm{~mol}^{-1} \checkmark$.
IR shows $C=O$ at about $1700 \mathrm{~cm}^{-1} \checkmark$.
$\mathrm{C}=\mathrm{O}$ has mass 28, so the rest of the molecule is $58-28=30=2 \times \mathrm{CH}_{3} \checkmark$, so it must be $\mathrm{CH}_{3} \mathrm{COCH}_{3}$

Could also use peak at $m / z=43$ as evidence for $\left(\mathrm{CH}_{3} \mathrm{C}=\mathrm{O}\right)^{+}(\mathrm{g})$.
ii $\quad \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}+\mathrm{O}_{2} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}+\mathrm{CH}_{3} \mathrm{COCH}_{3}$
1c
i $\quad \mathrm{OH}^{-}$is a nucleophile in this reaction.
ii Arenes normally react with electrophiles. Harsh conditions are needed to overcome the repulsion/high activation energy.

2a
i

ii

2b
i Stage 1: must chlorinate first \checkmark. If nitrated first the major product would be 3-nitrochlorobenzene \checkmark.

Stage 1: $\mathrm{Cl}_{2} / \mathrm{AlCl}_{3}$ (anhydrous) \checkmark
Intermediate product: chlorobenzene \checkmark

Stage 2: conc $\mathrm{HNO}_{3}\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$
$\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}+6[\mathrm{H}] \checkmark \rightarrow \mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{NH}_{2}+2 \mathrm{H}_{2} \mathrm{O} \checkmark$

2c
Reaction with Na :

Observation: effervescence/bubbles \checkmark
Reaction with Br_{2} :

At least one H replaced by a Br anywhere on the ring.
Observation: decolorises bromine/white precipitate.
ii

Carbonyl compounds

Reactions of carbonyl compounds

1a

Mechanism is nucleophilic addition. Product is 2-hydroxy-2-methylbutanenitrile.

$4 \times \checkmark$ for the mechanism
1b

Mechanism is nucleophilic addition. Product is phenylmethanol.
[3]

$4 \times \checkmark$ for the mechanism

Characteristic tests for carbonyl compounds

2a $\mathrm{To}_{3} \mathrm{~cm}^{3}$ of $\mathrm{AgNO}_{3}(\mathrm{aq})$ add 1 drop of $\mathrm{NaOH}(\mathrm{aq})$. A brown precipitate of $\mathrm{AgO}(\mathrm{s})$ will be formed. Add dilute $\mathrm{NH}_{3}(\mathrm{aq})$ drop by drop until the precipitate just re-dissolves. \checkmark Place in a beaker of water at about $60^{\circ} \mathrm{C}$ for about 5 minutes.

Split the solution between two test tubes. Add 4 drops of propanal to one test tube and 4 drops of propanal to the other test tube.

2b The test tube with the propanal will produce a silver precipitate/mirror and the one with the propanone will not. $\checkmark \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}+[\mathrm{O}] \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH} \checkmark$
and
$\mathrm{Ag}^{+}+1 \mathrm{e}^{-} \rightarrow \mathrm{Ag}(\mathrm{s}) \checkmark$

Carboxylic acids and esters

Properties of carboxylic acids

1a $2 \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{Mg} \rightarrow\left(\mathrm{CH}_{3} \mathrm{COO}^{-}\right)_{2} \mathrm{Mg}^{2+}+\mathrm{H}_{2}[1]$
1b $\mathrm{HOOC}-\mathrm{COOH}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{Na}^{+}-\mathrm{OOC}-\mathrm{COO}^{-} \mathrm{Na}^{+}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$ [1]

Esters and acyl chlorides

2a Propan-2-ol, $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$
2b Thionyl chloride, SOCl_{2}
2c Dimethylamine, $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$
2d Propanamide

Exam-style questions

1a
i $\quad \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{H}_{2} \mathrm{O} \checkmark$
ii
Catalyst \checkmark
iii Any $\mathrm{H}_{2} \mathrm{O}$ present would push the equilibrium to the left and reduce formation of ester \checkmark
iv \quad mol of ethanol $=6.90 / 46=0.15 \mathrm{~mol} \checkmark$
0.15 mol of ethanoic acid $=0.15 \times 60=9.0 \mathrm{~g} \checkmark$
[2]
v Heat is required to initiate the reaction \checkmark, if distilled immediately the volatile compounds would be distilled out and disturb the equilibrium \checkmark.

1b
i $\quad 2 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{CO}_{3}^{2-}(\mathrm{aq}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \checkmark$
ii Use a separating (dropping) funnel and run off the lower aqueous layer \checkmark
1c
i mol of ethanol used $=0.15 \mathrm{~mol}$
mol of ethyl ethanoate produced $=5.28 / 88=0.06 \mathrm{~mol} \checkmark$
$\%$ yield $(0.06 / 0.15) \times 100=40 \% \checkmark$
ii Use ethanoyl chloride or ethanoic anhydride instead of ethanoic acid \checkmark. Reaction is not reversible \checkmark.

2 Acid anhydrides react with alcohol/phenols to produce an ester and carboxylic acid. The equation can be represented as:
$\mathrm{CH}_{3} \mathrm{COOCOCH}_{3}+\mathrm{ROH} \rightarrow \mathrm{CH}_{3} \mathrm{COOR}+\mathrm{CH}_{3} \mathrm{COOH} \checkmark$
Atom economy $=\left(\frac{\text { molar mass of desired product }\left(\mathrm{CH}_{3} \mathrm{COOR}\right)}{\text { molar mass of all products }\left(\mathrm{CH}_{3} \mathrm{COOR}+\mathrm{CH}_{3} \mathrm{COOH}\right)}\right) \times 100$
Assume molar mass of $\mathrm{CH}_{3} \mathrm{COOR}$ is M, so the only unknown is M. Rearrange the equation and solve for M.
$69.39=\left(\frac{M}{M+60}\right) \times 100 \checkmark \checkmark \checkmark$
$69.39(M+60)=100 M$
$69.39 M+4163.3=100 M$
$4163.4=30.61 M$
Solving for M gives molar mass of $\mathrm{CH}_{3} \mathrm{COOR}=136 \checkmark$
$\mathrm{CH}_{3} \mathrm{COO}$ has mass $=59$, so mass of R must be $136-59=77 \checkmark$

The R group is made up of only C and H , so it must be $\mathrm{C}_{6} \mathrm{H}_{5}$ (phenyl) \checkmark Compound A must be $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH} \checkmark$

3a

[3]
3b
i Reagent A is HCl and reagent B is NaOH
[2]
ii $\quad \mathrm{HOC}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}+6[\mathrm{H}] \rightarrow \mathrm{HOC}_{6} \mathrm{H}_{4} \mathrm{NH}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
iii

Product 1
Product 2
[2]

3c

[4]

Nitrogen compounds, polymers and synthesis

Amines

Basicity and preparation of amines

1a Compounds with no rings of carbon atoms
1b Compounds with rings of carbon atoms stabilised by delocalised electrons
2a
i Ethanol
ii Water reacts with NH_{3} to produce an ammonium ion and cannot behave as a nucleophile.

2b
i

ii
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}+2 \mathrm{NH}_{3} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}+\mathbf{N H}_{4} \mathrm{Cl} \checkmark$
iii $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NHCH}_{2} \mathrm{CH}_{3}$ or $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{NH}$ or

3a

3b

3c

41 mark for each equation and 1 mark for each name:

[6]

Amino acids, amides and chirality

Reactions of amino acids

1a Compound in which the amine group and the carboxylic acid group are attached to the same carbon.

1b $\mathrm{H}_{2} \mathrm{NCH}(\mathrm{R}) \mathrm{COOH}$

Amides and chirality

2 Chiral compounds are asymmetric and have non-superimposable mirror images. [
3a
i

ii

iii

[6]

3b
i

ii

iii

3c The central C is not bonded to four different atoms or groups: $\mathrm{H}_{2} \mathrm{HCH}(\mathrm{H}) \mathrm{COOH}$
3d
i $\quad \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NO}_{2}+\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{NO}_{2} \rightarrow \mathrm{C}_{7} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}+\mathrm{H}_{2} \mathrm{O}$
ii

3e asp-val-lys-gly-gly-val-gly
4a
 E/Z

4b

4c
 E/Z

4d

$4 e$

$4 f$

4g

4h

[8]
5a

Methanamide

5b

5c

Phenylamine
5d

Exam-style questions

1a

[2]
1b

[2]

1c
i

ii

[2 marks for all 5. Lose 1 mark for each error/omission]
1d
i

Dioyl chloride
ii

2a

Element	C	H	O
Mass/\%	30.00	3.33	66.67
Ratio	$30.00 / 12=2.50$	$3.33 / 1=3.33$	$66.67 / 16=4.17$
Simplest ratio	$2.50 / 2.50=1$	$3.33 / 2.50=1.33$	$4.17 / 2.50=1.67$
Whole number ratio $(\times 3)$	3	4	5

Empirical formula $=\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{5} \checkmark \checkmark$
Empirical mass $=36+4+80=120$, so molecular formula $=\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{5} \checkmark$
[3]
2b
i $\quad \mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{5}$
ii

2c
i

ii

[2]

2d
i HCOOH
ii

iii

e
i Malic acid has a chiral carbon and forms two optical isomers.

[3]
ii Fumaric acid has a $\mathrm{C}=\mathrm{C}$ double bond with each carbon bonded to two different atoms or groups and forms E and Z isomers.

E

Z
[3]

3a

3b
i $\quad \mathrm{CH}_{3} \mathrm{COOH}$
ii

iii

$$
\begin{aligned}
& \text { mol of 2-hydroxybenzoic acid }=1.05 / 138 \checkmark=7.61 \times 10^{-3} \mathrm{~mol} \\
& \text { mol of aspirin }=0.98 / 180 \checkmark=5.44 \times 10^{-3} \mathrm{~mol} \\
& \% \text { yield }=\left(5.44 \times 10^{-3} / 7.61 \times 10^{-3}\right) \times 100=71.5 \%
\end{aligned}
$$

3c

3d Melting points would be lowered \checkmark and melting would not be sharp but spread over a range of temperatures \checkmark.
$3 e$
i

ii

[2]

3f $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \checkmark$ reacts with $\mathrm{COOH} \checkmark$ in aspirin but not with the phenol in paracetamol.
$3 \mathbf{g} \quad \mathrm{Br}_{2} \checkmark$ reacts on the benzene ring of paracetamol because it is activated by the OH group \checkmark.

Polyesters and polyamides

Condensation polymers

1a

1b

2

polymer

monomer

monomer is 2-methylbut-1-ene

3 A condensation polymer is formed by the elimination of a small molecule such as $\mathrm{H}_{2} \mathrm{O}$ or $\mathrm{HCl} \checkmark$ between monomers to generate a long-chain polymer.

4a

i Ethane-1,2-diol	ii Benzene-1,4-dioyl chloride	iii 1,4diaminohexane	iv Hexanedioic acid
$\mathrm{HO}-\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{OH}$		$\mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{NH}_{2}$	$\mathrm{HOOC}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{COOH}$

4b

2-hydroxypropanoic acid

3-hydroxypentanoic acid

Aminoethanoic acid (glycine)
2-amino-3-methylbutanoic
acid (valine) [4]

5a

Monomer 1

Propane-1,3-diol

Monomer 2

Propanedioic acid
[3]
5b

Monomer 1

Benzene-1,3-dioic acid

Monomer 2

1,4-diaminobutane

6a

[2]
6b

[2]

6c

[2]
6d

[2]

Exam-style question

1a
i The single monomer ethene, $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}$, can add together to form an addition polymer \checkmark. The dioic acid and the diol can react to form a condensation polymer \checkmark and condense out $\mathrm{H}_{2} \mathrm{O}$.

All marks could be achieved by suitable equations.
ii

1b
i

ii \quad Reagent $=$ dilute HCl or $\mathrm{NaOH} \checkmark$ Conditions warm gently/reflux \checkmark
1c

Carbon-carbon bond formation

Extending carbon chain length

```
1a CH3CH2Cl + K+CNN- CH3CH2CN + K+Cl-[1]
1b Ethanol
1c
```


1d

$2 \begin{array}{ll}\text { Reagents } & \mathrm{CH}_{3} \mathrm{COCl} \\ & \text { Conditions }\end{array} \mathrm{AlCl}_{3}$ (catalyst/halogen carrier) anhydrous
Mechanism

Step 1

formation of the electrophile

Step 3

$\mathrm{AlCl}_{4}^{-}+\mathrm{H}^{+} \longrightarrow \mathrm{AlCl}_{3}+\mathrm{HCl}$
regeneration of the catalyst
(halogen carrier)
[6]
3a \quad Reagent $=\mathrm{H}_{2}$, conditions: Ni catalyst
Equation: $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}+2 \mathrm{H}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$
[3]

3b \quad Reagent $=\operatorname{acid} / \mathrm{H}^{+}$, conditions $=(\mathrm{aq})$

Equation:

Hydrolysis occurs and water adds to form an acid amide

Hydrolysis occurs again and water adds to form a carboxylic acid

The net reaction for acid hydrolysis is:

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{H}^{+} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}+\mathrm{NH}_{4}^{+}
$$

Organic synthesis

Practical skills

1a Reflux

1b Distillation

Thermometer

Synthetic routes

2a Dissolve impure sample in minimum amount of hot water.
Filter while hot to remove insoluble graphite.
Allow to cool and filter cold solution to remove insoluble benzoic acid.

Wash with cold water and leave overnight to dry.
2b Melting point: should be sharp melting (at $122^{\circ} \mathrm{C}$) if pure (impurities lower the melting point and increase the range over which it melts).

3

Test	Observation	Inference
Add litmus	Turns red	or phenol
	Turns blue	Amine
	Decolorises	Alkene
	Decolorises and white precipitate formed	Phenol
Add Na	Effervescence/bubbles	Carboxylic acid, phenol or alcohol
Add $\mathrm{Na}_{2} \mathrm{CO}_{3}($ aq $)$	Effervescence /gas $\left(\mathrm{CO}_{2}\right)$ given off, bubbles, fizzes	Carboxylic acid
In water bath at about $60^{\circ} \mathrm{C}$ with AgNO	White, cream or yellow precipitate formed	Haloalkanes

Test	Observation	Inference
Tollens' reagent $/ \mathrm{Ag}^{+}\left(\mathrm{NH}_{3}\right)_{2}$	Silver mirror formed	Aldehyde
Heat with $\mathrm{H}^{+} / \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$	Colour changes from orange to green	Primary alcohol, secondary alcohol, aldehyde
Add water	White fumes of HCl given off	Acyl chloride
Warm with $\mathrm{NaOH}(\mathrm{aq})$	Smell of NH_{3} gas (which turns litmus blue)	Amide

4 Stage 1 Reduce propanal to propan-1-ol with NaBH_{4}
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}+2[\mathrm{H}] \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
Stage 2 React alcohol with HBr (made in situ from $\mathrm{NaBr} / \mathrm{H}_{2} \mathrm{SO}_{4}$)

$$
\begin{equation*}
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{H}^{+}+\mathrm{Br}^{-} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}+\mathrm{H}_{2} \mathrm{O} \tag{6}
\end{equation*}
$$

5 Stage 1 React butan-1-ol with hot concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ (approx. $170^{\circ} \mathrm{C}$)

$$
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

Stage 2 React but-1-ene with steam in presence of acid $\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)$ catalyst

$$
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}
$$

This will follow the Markownikoff rule.
[6]
6 Stage 1 React propene with steam in presence of acid $\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)$ catalyst
$\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2}+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$
This will follow the Markownikoff rule.
Stage 2 Reflux with $\mathrm{H}^{+} / \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ to oxidise propan-2-ol to form propanone
$\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}+[\mathrm{O}] \rightarrow \mathrm{CH}_{3} \mathrm{COCH}_{3}+\mathrm{H}_{2} \mathrm{O}$
Stage 3 React propanone with HCN
$\mathrm{CH}_{3} \mathrm{COCH}_{3}+\mathrm{HCN} \rightarrow \mathrm{CH}_{3} \mathrm{C}(\mathrm{CN})(\mathrm{OH}) \mathrm{CH}_{3}$
$\mathrm{CH}_{3} \mathrm{C}(\mathrm{CN})(\mathrm{OH}) \mathrm{CH}_{3}$ can be written as $\mathrm{CH}_{3} \mathrm{C}\left(\mathrm{CH}_{3}\right)(\mathrm{OH}) \mathrm{CN}$
Stage 4 Acid hydrolysis of 2-methylpropanenitrile

$$
\mathrm{CH}_{3} \mathrm{C}\left(\mathrm{CH}_{3}\right)(\mathrm{OH}) \mathrm{CN}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{H}^{+} \rightarrow \mathrm{CH}_{3} \mathrm{C}\left(\mathrm{CH}_{3}\right)(\mathrm{OH}) \mathrm{COOH}+\mathrm{NH}_{4}^{+}
$$

Exam-style question

1a Ratio C:N:H = 77.42/12 : 15.05/14 : 7.53/1
Empirical formula C:N:H = 6.45:1.075:7.53 $=6: 1: 7=\mathrm{C}_{6} \mathrm{NH}_{7} \checkmark$
Mass spectrum shows molecular ion at $m / z=93$ so molecular formula also $\mathrm{C}_{6} \mathrm{NH}_{7} \checkmark$
Infrared spectrum shows N-H in region 3300-3500 cm-1 \checkmark
Compound B is $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2} \checkmark$
1b Stage 1 nitration of benzene
Reagent: conc $\mathrm{HNO}_{3} \checkmark$ Conditions: conc $\mathrm{H}_{2} \mathrm{SO}_{4}$ catalyst / temp 50-60 ${ }^{\circ} \mathrm{C} \checkmark$
Equation: $\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{HNO}_{3} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}$
Stage 2 reduction of nitrobenzene
Reagent: Sn and conc $\mathrm{HCl} \checkmark \quad$ Conditions: warm \checkmark
Equation: $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}+6[\mathrm{H}] \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}+2 \mathrm{H}_{2} \mathrm{O} \checkmark$
Stage 3 reaction of phenylamine with acyl chloride
Reagent: $\mathrm{CH}_{3} \mathrm{COCl} \checkmark \quad$ Conditions: anhydrous/fume cupboard \checkmark
Equation: $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}+\mathrm{CH}_{3} \mathrm{COCI} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NHCOCH}_{3}+\mathrm{HCl} \checkmark$

Analysis

Chromatography and qualitative analysis

Types of chromatography

1a $\quad R_{\mathrm{f}}$ value = (distance travelled by component)/(distance travelled by solvent)
1b retention time - time taken for component to emerge from column after injection of sample into column.

2 Quantitative results are difficult to achieve with TLC.
Similar compounds have similar R_{f} values and spots may overlap.

Tests for organic functional groups

3

Functional group		Reagent/conditions	Observation	Marks
Name	Group			
Alkene		$\mathrm{Br}_{2}(\mathrm{aq})$	Decolorised	2
Haloalkane	R-CI	$\mathrm{Ag}\left(\mathrm{NH}_{3}\right) 2^{+}(\mathrm{aq})$ in water bath at about $60^{\circ} \mathrm{C} / \mathrm{NaOH}(\mathrm{aq})+$ $\mathrm{AgNO}_{3}(\mathrm{aq}) / \mathrm{NH}_{3}(\mathrm{aq})$	Ag (halide)(s)	2
*Aldehyde		2,4-dinitrophenylhydrazine solution	Orange precipitate	2
		Tollens' test	Silver mirror	2
*Ketone		2,4-dinitrophenylhydrazine solution	Orange precipitate	2
		Tollens' test	No silver mirror	2
*Phenol		Br_{2}	Decolorised and white precipitate	2
		Na (s)	Effervescence / bubbles	2
Carboxylic acid		$\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})$	Effervescence / bubbles	2
Acid chloride		$\mathrm{H}_{2} \mathrm{O}$	White fumes of HCl	2
* Each of these functional groups requires a combination of two tests to confirm its presence				20

Spectroscopy

NMR spectroscopy

1

no of peaks in ${ }^{1} \mathrm{H}$ NMR	
no of peaks in ${ }^{13} \mathrm{C}$ NMR.......	8

2a hydrogen environments $=1 \checkmark \quad$ carbon environments $=1 \checkmark$
2b Any three from:
Chemically inert (doesn't react with sample)
Volatile (easy to remove from sample after)
Absorbs at higher frequency than other organic compounds (doesn't overlap with other organic compounds)
Only 1 singlet peak in both ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{CNMR}$ spectra

Identify the range for the ${ }^{1} \underline{\mathrm{H}}$ environment		Identify the range for the ${ }^{13} \underline{\mathrm{C}}$ environment	
Chemical environment	δ	Chemical environment	δ
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$	0.5-2.0	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$	5-50
$\mathrm{CH} 3_{3} \mathrm{COOH}$	2.0-3.0	$\mathrm{CH}_{3} \mathrm{COOH}$	160-220
$\mathrm{CH}_{3} \mathrm{CHO}$	2.0-3.0	$\mathrm{CH}_{3} \mathrm{CHO}$	160-220
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$	2.0-3.0	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$	110-160
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$	0.8-12.0	$\mathrm{CH}_{3} \underline{C H}_{2} \mathrm{NH}_{2}$	30-70
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$	3.0-4.2	$\mathrm{CH}_{3} \mathrm{CH} \underline{C H}$	5-50
$\mathrm{CH}_{3} \mathrm{COOH}$	10.2-12.0	$\mathrm{CH}_{3} \mathrm{CHBrCH}$	20-50
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$	0.5-2.0	$\mathrm{CH}_{3} \mathrm{COOCH}_{3}$	160-220
$\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{CH}_{3}$	2.0-3.0	$\mathrm{CH}_{3} \mathrm{COCH}_{3}$	160-220
$\mathrm{C}_{6} \mathrm{H}_{6}$	6.5-8.0	$\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$	50-90
$\mathrm{CH}_{3} \mathrm{CHO}$	9.0-10.0	$\mathrm{CH}_{3}-\mathrm{O}-\underline{\mathrm{CH}}{ }_{3}$	50-90
$\mathrm{CH}_{3} \mathrm{OH}$	3.0-4.2	$\mathrm{H}_{2} \mathrm{NCH}\left(\mathrm{CH}_{3}\right) \underline{\mathrm{COOH}}$	160-220
$\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{3}$	3.0-4.2	$\mathrm{CH}_{3} \mathrm{CONHCH}_{3}$	160-220
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$	0.8-12.0	$\mathrm{H}_{2} \mathrm{~N} \underline{\mathrm{CH}}\left(\mathrm{CH}_{3}\right) \mathrm{COOH}$	30-70

3 Spectrum 1 is compound $C \checkmark$ because it has 2 peaks \checkmark in region 5-50 ppm \checkmark Spectrum 2 is compound $\mathrm{A} \checkmark$ because it has 3 peaks \checkmark (in the region $0-70 \mathrm{ppm}$) \checkmark Spectrum 3 is compound $D \checkmark$ because it has 2 peaks \checkmark in region $90-160 \mathrm{ppm} \checkmark$ Spectrum 4 is compound $E \checkmark$ because it has 4 peaks \checkmark in region $90-60 \mathrm{ppm} \checkmark$ Spectrum 5 is compound $B \checkmark$ because it has 4 peaks \checkmark in region $5-50$ ppm \checkmark
$4 \quad$ 82.76\% C and 17.24\% H gives
ratio $\mathrm{C}: \mathrm{H}=82.76 / 12: 17.24 / 1$
$C: H=6.90: 17.24$
so ratio $1: 2.5$ so empirical formula is $\mathrm{C}_{2} \mathrm{H}_{5}$.
Empirical mass $=29$ molar mass $=58$ so molecular formula is $\mathrm{C}_{4} \mathrm{H}_{10} \checkmark$
It could be butane or methylpropane. ${ }^{13} \mathrm{C}$ NMR has 4 peaks: butane has 4 different C environments \checkmark whereas methylpropane only has $2 C$ environments \checkmark. Therefore, it is butane.

5a ilf undeuterated solvents were used (e.g. CHCl_{3}), the H would absorb and interfere/overlap with the spectrum of the sample.
ii If deuterated solvents (e.g. CDCl_{3}) are used, the ${ }^{2} \mathrm{D}$ absorbs at frequencies that do not interfere/overlap with the spectrum of the sample.
CDCl_{3} or any other deuterated solvent \checkmark

5b

Number of H on adjacent C	Type of splitting
1	Doublet (2)
2	Qriplet (3)
3	Pentet/quintet (5)
4	

[2]

* Multiplet would suffice

5c
There are 4 different H environments in methylbutane (labelled a to d) The peak ratio will be

$H_{a}: H_{b}: H_{c}: H_{d}$
$6: 2: 3: 1$

Compound	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$			$\mathrm{CH}_{3} \mathrm{COOCH}_{3}$			$\mathrm{HCOOCH}_{2} \mathrm{CH}_{3}$		
Number of peaks	3			2			3		
Ratio of peak areas	3:2:1			1:1			1:2:3		
Type of H and δ value and splitting	CH_{3}	$\begin{aligned} & 0.5- \\ & 2.0 \end{aligned}$	Triplet	CH_{3} (on left)	$\begin{aligned} & 2.0- \\ & 3.0 \end{aligned}$	Singlet	H	2.0-3.0	Singlet
Type of H and δ value and splitting	CH_{2}	$\begin{aligned} & 3.0- \\ & 4.2 \end{aligned}$	Quartet	CH_{3} (on right)	$\begin{aligned} & \hline 3.0- \\ & 4.2 \end{aligned}$	Singlet	CH_{2}	3.0-4.2	Quartet
Type of H and δ value and splitting	OH	0.5-12	Singlet				CH_{3}	0.5-2.0	Triplet
Marks				1	1		1	1	1

5e A labile proton is a proton that is easy to exchange with other protons in the solvent, such as in $\mathrm{O}-\mathrm{H}$ or $\mathrm{N}-\mathrm{H}$. These are difficult to assign as they appear in a wide range. If solvent is deuterated the proton in the $\mathrm{O}-\mathrm{H}$ or in the $\mathrm{N}-\mathrm{H}$ and the deuterated proton exchange and the ${ }^{1} \mathrm{H}$ peak disappears from the spectrum.

5f Alcohol, carboxylic acid, amine and amide.

Combined techniques

6a Infrared spectroscopy can be used to identify functional groups.
6b Chromatography can be used to separate components in a mixture.
6c Mass spectrometry can be used to determine molar mass.
6d GC is used to separate components \checkmark and MS uses fragmentation ions \checkmark to match with computer database \checkmark to identify the component.

6e $\quad{ }^{13} \mathrm{C}$ NMR is used to identify carbon environments.
6f $\quad{ }^{1} \mathrm{H}$ NMR is used to identify hydrogen environments \checkmark and splitting patterns \checkmark give information about neighbouring environments.

7 Step 1 IR shows peak in region 3200-3600 cm-1 indicating an alcohol.
Step 2 MS has molecular ion peak at $m / z=74$ showing molar mass to be $74 \mathrm{~g} \mathrm{~mol}^{-1}$
Step 3 OH functional group has mass $=17$, molar mass $=74$ therefore the rest of the molecule $=74-17=57$. (Assuming only one -OH group is present)

Step 4 The rest of the molecule is the carbon \& hydrogen hence it must be made up of 4 carbons (48) and 9 hydrogens so the formula is $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}$.

Step $5 \quad{ }^{13} \mathrm{C}$ NMR shows there are 3 different C environments.

Step 6

4 C environments

$2 C$ environments

4 C environments

$3 C$ environments

Step 7

H_{a} is split into a doublet, as it is next to $\mathrm{C}-\mathrm{H}$.
Chemical shift is $0.5-2.0$ as next to C in chain.
H_{b} is split into a multiplet, as it is next to 8 Hs , but in different environments.
H_{c} is split into a doublet, as it is next to $\mathrm{C}-\mathrm{H}$.
Chemical shift is $3.0-4.2$ as next to 0 .
H_{d} is a singlet.
Hence the compound is methylpropan-1-ol.

There are numerous ways this can be approached. It is possible to simply label key features on each spectrum and to use them to build the unknown molecule. However, a much better approach is to write out each step in full and explain your logic, so that the marker/examiner can follow your approach.

A possible mark scheme is:

- $\mathbf{C = O}$ identified in IR \checkmark
- Molar mass deduced from MS \checkmark
- Benzene ring deduced from either MS or ${ }^{1} \mathrm{H}$ NMR \checkmark
- $\mathrm{CH}_{3} \mathrm{CH}_{2}$ deduced from peaks at 1.2 and 4.3 in IR \checkmark
- CH_{2} bonded to an O deduced from chemical shift in IR \checkmark
- Four different C environments in benzene ring deduced from peaks around 130 in ${ }^{13} \mathrm{C}$ NMR \checkmark

Compound B is $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOCH}_{2} \mathrm{CH}_{3}$.
There are many different ways in which the chemical could have been identified

Exam-style questions

1a
i Each peak was counted as a separate ester \checkmark
ii Similar compounds have similar retention times \checkmark and peaks might overlap so that what looks like one peak may be made up of more than 1 ester \checkmark

1b Mass spectrum shows molecular ion $=150 \checkmark$ Ester group COO has mass $=44$, rest of molecule has mass $=106$ and consists of $8 \mathrm{C}(96)$ and 10 H , molecular formula is $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{2}, \checkmark \checkmark$
${ }^{13} \mathrm{C}$ NMR shows nine different C environments.
${ }^{1} \mathrm{H}$ NMR shows aromatic carbons.
${ }^{13} \mathrm{C}$ NMR shows that each of the aromatic carbons are non-equivalent. \checkmark
Chemical shifts: ${ }^{1} \mathrm{H}$ NMR shows the aliphatic protons in region $2-3$ ppm, so must be either HC - bonded to a $\mathrm{C}=\mathrm{O}$ and/or a benzene ring \checkmark (or a N) and four aromatic protons, so must be two aromatic protons substituted \checkmark.

Hence it contains:

- a benzene ring with a methyl group attached
- a methyl group attached to $\mathrm{C}=\mathrm{O}$ of the ester which is attached to the ring

A

B

C

Isomers A and B each have six difference carbon environments in the benzene ring and one for each of the aliphatic carbons, giving a total of nine peaks.

Isomer C would have four peaks due to the aromatic carbons and one for each of the aliphatic carbons, giving a total of seven peaks.

A would have 9 , B would 9 and C would have 7 .
So it is either A or B

1c The fragmentation pattern in the mass spectra \checkmark of the two isomers could be identified using a computer database. \checkmark

2a Instant decolorisation of Br_{2} suggest it contains an alkene group, $\mathrm{C}=\mathrm{C} . \checkmark$
Reaction with $\mathrm{H}^{+} / \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ indicates either a primary alcohol, a secondary alcohol or an aldehyde.

2b Mass spectrum shows molecular ion at $\mathrm{m} / \mathrm{z}=132$

Wet tests show either primary alcohol, secondary alcohol or aldehyde but infrared spectrum shows must be aldehyde \checkmark, because there is a peak at approx. $1700 \mathrm{~cm}^{-1}$ and there isn't a peak in region 3200-3600 cmr . \checkmark

Mass of compound = 132, mass of functional groups $(C=C=24+C=O=28)=52$ so the rest of the molecule has a mass of $132-52=80$.

The rest of the compound is C and H , hence 6 C and 8 H .
Molecular formula $=\mathrm{C}_{6} \mathrm{H}_{8}+\mathrm{C}=\mathrm{C}+\mathrm{C}=\mathrm{O}=\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}$.
Mass spectrum: peak $A \quad m / z=132=\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}^{+}(\mathrm{g}) \checkmark$

$$
\text { peak } \mathrm{B} \quad m / z=103=\mathrm{C}_{8} \mathrm{H}_{7}^{+}(\mathrm{g}) \checkmark
$$

(Allow $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}^{+}$)
peak C

$$
m / z=77=\mathrm{C}_{6} \mathrm{H}_{5}{ }^{+}(\mathrm{g}) \checkmark
$$

$\mathrm{C}_{6} \mathrm{H}_{5}$ is benzene ring with 1 H substituted $\mathrm{C}_{6} \mathrm{H}_{5}-$
$\mathrm{C}_{8} \mathrm{H}_{7}$ must be benzene ring attached to $\mathrm{C}_{2} \mathrm{H}_{2}: \mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}=\mathrm{CH}-\checkmark$ (Allow $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}$)
$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}$ must be $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}=\mathrm{CH}-$ attached to $\mathrm{CHO} \checkmark$
(Allow $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCHCH}_{2}$, which can be ruled out because it is a ketone.)
To give $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}=\mathrm{CHCHO}$:

